Abstract

In the present work thermal buckling of symmetric cross-ply composite laminates is investigated. In this study, a square plate element is employed for the thermal buckling analysis of composite laminated plates. The maximum buckling temperature of symmetric cross-ply laminates under various sides to thickness ratios, aspect ratios, stacking sequence and boundary condition are studied in detail. The maximum buckling temperature analysis of square composite eight and four layered plates under uniform temperature rise is investigated using the classical laminated plate theory & first order shear deformation theory and material properties (Stiffnesses, Poisson’s ratio and Coefficient of thermal expansion) are considered to be temperature dependent. The classical laminated plate theory and first order shear deformation theory in conjunction with the Rayleigh-Ritz method is used for the evaluation of the thermal buckling parameters of structures made out of graphite fibers with an epoxy matrix. The post-buckling response of symmetrically cross-ply laminated composite plates subjected to a combination of uniform temperature distribution through the thickness and in-plane compressive edge loading is presented. The maximum buckling temperature is obtained from the solution. The computing is done by using MATLAB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call