Abstract

Asymmetric Incremental Sheet Forming (AISF) has been developed as a flexible process for low-volume production of sheet metal parts. In AISF, a part is obtained as the sum of localized plastic deformations produced by a simple forming tool that moves under CNC control. In spite of about 20 years of research and development, AISF has not had much industrial take-up yet. The main reason for this is that attempts to improve, among other limitations, the accuracy, speed and range of feasible geometries of the process by adapted process strategies has not brought about general solutions. This paper presents an overview of the current state of development of hybrid asymmetric incremental sheet forming processes at RWTH Aachen University. The goal of the development of hybrid ISF processes is to allow for a quantum leap of the capabilities of AISF in order to enable a broader industrial use of AISF. Two hybrid process variations of AISF are presented: stretch forming combined with ISF and laser-assisted AISF. It is shown that the combination of stretch forming and AISF can improve the time per part, sheet thickness distribution and accuracy of the final part. Laser-assisted AISF is shown to enable the flexible forming of non cold-workable materials such as magnesium and titanium alloys when the forming conditions are adapted to the temperature and strain rate dependent formability of the sheet metal. In addition, first results of the forming of hybrid aluminum-steel sheet metal are shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.