Abstract

AbstractThe upsurging demand for electric vehicles and the rapid consumption of lithium‐ion batteries (LIBs) calls for LIBs to possess high energy density and resource sustainability. The former requires the usage of electroactive materials with high capacity and the maximum amount within the fixed electrode volume. The latter essentially creates a closed‐loop circulation scenario for electroactive materials. In all aspects, binders are of practical significance in bonding electroactive materials, maintaining electrode integrity and detaching electrode slurry from the current collector. Currently, the key role of binders in enhancing the electrochemical behavior of sustainable high‐capacity electroactive materials has been recognized. Meanwhile, binders that are designed for easy and cost‐effective recycling of electroactive materials are gradually reported. Herein, recently developed binders that hold promises in establishing sustainable high‐energy‐density LIBs are summarized. The role of binder in facilitating easy separation of electroactive materials are first highlighted. Subsequently, special attention is paid to conductive binders, contributing to less battery chemistries and higher energy density of electrode. Additionally, progress of emerging binders in high‐capacity electroactive materials are also reviewed. It is believed that the advances in binders will open up opportunities for establishing a sustainable high‐energy‐density battery economy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.