Abstract

Cancer cells require a higher amount of energy in the form of fatty acids for their uncontrolled proliferation and growth. Fatty acid synthase (FASN) plays a crucial role in the synthesis of palmitate, which is involved in most of the critical malignant pathways. Hence, by targeting FASN, tumour growth can be controlled. By designing and developing FASN inhibitors with catalytic domain specificity, safe and potential anticancer drugs can be achieved. The article draws light towards the catalytic domains of FASN, their active site residues and interaction of some of the reported natural FASN inhibitors (resveratrol, lavandulyl flavonoids, catechins, stilbene derivatives, etc). The rationality (structure-activity relationship) behind the variation in the activity of the reported natural FASN inhibitors (butyrolactones, polyphenolics, galloyl esters and thiolactomycins) has also been covered. Selective, safe and potentially active FASN inhibitors could be developed by: (i) having proper understanding of the function of all catalytic domains of FASN (ii) studying the upstream and downstream FASN regulators (iii) identifying cancer-specific FASN biomarkers (that are non-essential/absent in the normal healthy cells) (iv) exploring the complete protein structure of FASN, e-screening of the compounds prior to synthesis and study their ADME properties (v) predicting the selectivity based on their strong affinity at the catalytic site of FASN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call