Abstract

High temperature thermal energy storage offers a huge energy saving potential in industrial applications such as solar energy, automotive, heating and cooling, and industrial waste heat recovery. However, certain requirements need to be faced in order to ensure an optimal performance, and to further achieve widespread deployment. In the present review, these requirements are identified for high temperature (>150°C) thermal energy storage systems and materials (both sensible and latent), and the scientific studies carried out meeting them are reviewed. Currently, there is a lack of data in the literature analysing thermal energy storage from both the systems and materials point of view. In the part 1 of this review more than 25 requirements have been found and classified into chemical, kinetic, physical and thermal (from the material point of view), and environmental, economic and technologic (form both the material and system point of view). The enhancements focused on the thermal conductivity are addressed in the Part 2 of this review due to their research significance and extension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.