Abstract
Network modeling has proven to be a fundamental tool in analyzing the inner workings of a cell. It has revolutionized our understanding of biological processes and made significant contributions to the discovery of disease biomarkers. Much effort has been devoted to reconstruct various types of biochemical networks using functional genomic datasets generated by high-throughput technologies. This paper discusses statistical methods used to reconstruct gene regulatory networks using gene expression data. In particular, we highlight progress made and challenges yet to be met in the problems involved in estimating gene interactions, inferring causality and modeling temporal changes of regulation behaviors. As rapid advances in technologies have made available diverse, large-scale genomic data, we also survey methods of incorporating all these additional data to achieve better, more accurate inference of gene networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.