Abstract

Hydrogen is a clean and efficient energy carrier, and a hydrogen-based economy is an alternative solution for sustainability. The present work reviews the recent progress for hydrogen's production from various technologies including the generation from fossil fuels, from biomass through biological and thermochemical processes and from water splitting. Although hydrogen is a zero-emission energy when it is used, its cleanness depends on the production pathway that preceded. Hydrogen's storage and transportation has been costly and an unsafe procedure; formic acid (FA; CH2O2), on the other hand, can be generated, transported, and decomposed easily to hydrogen. Formic acid is generated from the hydrogenation of atmospheric carbon dioxide (CO2) and can easily be provided with energy portable devices, vehicles, and other applications. In addition, the most widely known homogeneous and heterogeneous catalysts and reactors for the formic acid reaction are presented. Different types of reactors like, fixed-bed reactors (FBRs), batch reactors, continuously stirred tank reactors (CSTRs) and microreactors were assessed for their performance and reaction's efficiency during formic acid’s decomposition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call