Abstract

Phase change materials (PCMs) proved to be valuable and drew the attention of numerous scientists striving to establish novel techniques to minimize energy consumption and expand heat storage; yet a number of challenges hampered their research. This paper provides an overall overview on how to overcome those constraints by adapting nano-enhanced phase change materials, the motivation behind their investigation, their advantages, area of applications, and their impact on thermal management and storage equipment. Recent computational and experimental studies have revealed that nanoparticles are extremely useful in terms of improving the thermo-physical properties of PCMs, allowing nano-PCMs, mainly nano-paraffin, to have a major positive influence on thermal concepts at the economical, ecological, and effectiveness levels. In this context, nano-enhanced PCMs are now able to store and release large amounts of heat in short intervals of time, which is relevant to thermal storage systems and contributes to augmenting and boosting their efficiency. It also improves the thermal performance of cooling and heating systems in buildings and regulates the operating temperature of PV systems, electronic components, and batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call