Abstract

In recent years, machine learning, especially deep learning, has developed rapidly and has shown remarkable performance in many tasks of the smart grid field. The representation ability of machine learning algorithms is greatly improved, but with the increase of model complexity, the interpretability of machine learning algorithms is worse. The smart grid is a critical infrastructure area, so machine learning models involving it must be interpretable in order to increase user trust and improve system reliability. Unfortunately, the black-box nature of most machine learning models remains unresolved, and many decisions of intelligent systems still lack explanation. In this paper, we elaborate on the definition, motivations, properties, and classification of interpretability. In addition, we review the relevant literature addressing interpretability for smart grid applications. Finally, we discuss the future research directions of interpretable machine learning in the smart grid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.