Abstract

The inorganic–organic S-scheme heterojunction photocatalyst demonstrates exceptional light absorption capacity, high photogenerated charge separation efficiency, and remarkable redox ability, while also inheriting diverse advantages of both inorganic and organic semiconductors. This paper provides a comprehensive review of recent advances in photocatalysis in relation to the inorganic–organic S-scheme heterojunction photocatalyst. Firstly, the fundamental aspects and benefits of the S-scheme heterojunction photocatalyst are outlined, followed by a discussion of several synthetic techniques for producing the inorganic–organic S-scheme heterojunction photocatalyst, as well as various advanced characterization methods that can verify the S-scheme heterojunction photocatalyst in both steady-state and transient processes. The impact of the inorganic–organic S-scheme heterojunction photocatalyst is illustrated with examples in fields such as carbon dioxide reduction, water splitting for hydrogen production, hydrogen peroxide synthesis, nitrogen fixation, organic pollutant degradation, organic transformation, and sterilization. Finally, suggestions are presented for designing the inorganic–organic S-scheme heterojunction photocatalyst and enhancing its photocatalytic performance. Undoubtedly, the inorganic–organic S-scheme heterojunction photocatalyst has emerged as a prominent and promising technology in the field of photocatalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.