Abstract
Phyllosilicates have emerged as a promising class of large bandgap lamellar insulators. Their applications have been explored from the fabrication of graphene-based devices to 2D heterostructures based on transition metal dichalcogenides with enhanced optical and polaritonics properties. In this review, we provide an overview of the use of infrared (IR) scattering-type scanning near-field optical microscopy (s-SNOM) for studying nano-optics and local chemistry of a variety of 2D natural phyllosilicates. Finally, we bring a brief update on applications that combine natural lamellar minerals into multifunctional nanophotonic devices driven by electrical control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.