Abstract

In this paper we review the Dynamic Van der Waals theory, which is a recent developed method to study phase separation and transition process in multiphase flow. Gradient contributions are included in the entropy and energy functions, and it’s particularly useful and non-trivial if we consider problems with temperature change. Using this theory, we can simulate that, a droplet in an equilibrium liquid will be attracted to the heated wall(s) which was initially wetted, which is the main cause of the famous hydrodynamic phenomena-Leidonfrost Phenomena. After more than ten years development, this theory has been widely used to study the fluid flow in vaporing and boiling process, e.g., droplet motion. Furthermore, this theory has been combined with phase field model, which could be extended to solid-liquid phase transition. There has also been researches about constructing LBM scheme to extend to the Dynamic Van der Waals theory, using Chapman-Enskog analyze. In all, due to its rigorous thermodynamic derivation, this theory has now become the fundamental theoretical basis in the heated multiphase flow. Cited as : Zhang, T., Kou, J., Sun, S. Review on Dynamic Van der Waals Theory in two-phase flow. Advances in Geo-Energy Research, 2017, 1(2): 124-134, doi: 10.26804/ager.2017.02.08

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.