Abstract

The aircraft is subjected to high-temperature and high-pressure conditions during flight, which renders it susceptible to the occurrence of creep phenomenon. Several academics have conducted extensive research on this issue. This research paper provides a comprehensive overview of the existing literature on creep phenomena in aircraft engines. First, several classical creep calculation models are enumerated and categorized as creep life calculation, creep-fatigue life calculation, and creep deformation calculation. Studies on creep phenomena are conducted in various components of aircraft engines, such as the engine’s turbine blades, turbine disks, and combustion chambers. The creep behavior of turbine blades in aircraft engines has been extensively researched. Furthermore, the protective measures aimed at mitigating creep are presented. Materials with high creep resistance can be used, and alternative fuels could be implemented. This paper provides an in-depth analysis of the advantages of creep in aircraft, presented in a favorable perspective. Finally, the prospective future research direction is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.