Abstract
Artificial neural networks (ANN) consider classification as one of the most dynamic research and application areas. ANN is the branch of Artificial Intelligence (AI). The neural network was trained by back propagation algorithm. The different combinations of functions and its effect while using ANN as a classifier is studied and the correctness of these functions are analyzed for various kinds of datasets. The back propagation neural network (BPNN) can be used as a highly successful tool for dataset classification with suitable combination of training, learning and transfer functions. When the maximum likelihood method was compared with backpropagation neural network method, the BPNN was more accurate than maximum likelihood method. A high predictive ability with stable and well functioning BPNN is possible. Multilayer feed-forward neural network algorithm is also used for classification. However BPNN proves to be more effective than other classification algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Ambient Systems and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.