Abstract

Since direct manual tissue palpation is not possible in laparoscopic surgery, feedback information on tactile tissue properties is considerably diminished. Restoring part of the surgeon's sense of touch through devices capable of providing artificial tactile feedback (ATF) is an active field of applied research and development. Despite more than two decades of research, technical development of such devices is still basic, and pre-clinical as well as clinical experience is limited. This article provides an overview of the technological aspects of ATF in laparoscopic surgery, gives background information on principles of human perception of related feedback information, and reviews current research attempts in the field of ATF systems in laparoscopic surgery, broken down into three main system components: tactile sensor, display, and data processing. Tactile sensors have been developed to measure tissue compliance, reveal hidden structures or foreign bodies in tissue through measurement of pressure distribution, and to identify and locate arteries by detecting their pulsation. Furthermore, different solutions for presenting tactile data to the surgeon have been developed. Visual and auditory displays are easy to implement into the operating room equipment, while tactile displays still suffer from difficulties concerning their performance and requirements for clinical usability. The role of the data processing system as the linking component in an artificial tactile feedback system has been identified as crucial for effectiveness of the system and easy reception of tactile data by the surgeon. The investigations on theoretical and technological foundations of ATF have led to an extensive database in recent years. An application-driven development approach will likely be a driving factor in the future evolution of this field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.