Abstract

AbstractBecause of the growing population and the industrial revolution, a significant number of toxic materials including heavy metals (HMs) are being released into the environment, posing harm to humans, the environment, and other living organisms. When these HMs find their way into water sources, they cause water pollution and pose a threat to the ecosystem. As a result, there is an imperative need to eliminate these HMs from the water. Numerous techniques are being employed for water purification, but adsorption is the most economical and efficient method. The present article critically discussed the applications of different adsorbents including agricultural wastes, industrial wastes, biochar, chitosan, aerogel‐based adsorbents, geopolymer cement/concrete, carbon‐based nanomaterials (NMs), and polymer‐supported nanocomposites (NCs) for removal of HMs from wastewater. Removal capacity of some of the adsorbents are tabulated. Effects of dose of adsorbent, contact time, pH, temperature, initial ion concentration and ionic strength on the removal of HMs from water have been explored. Various adsorption isotherm and kinetic models have also been discussed, including the modeling using artificial neural networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.