Abstract
The main objective of this paper is to review the progress that has been made in South Africa with respect to whole-farm economic modelling over the past 2 decades. Farming systems are complex and careful consideration to the stochastic dynamic nature of irrigation farming processes and their linkages with the larger water system is necessary when conducting whole-farm modelling. Both simulation and optimisation approaches to whole-farm modelling have been developed. Simulation is able to realistically model key performance indicators for decision-making while taking cognisance of the stochastic dynamic nature of irrigation agriculture. Normally only a few predefined scenarios are considered and these do not include decisions regarding allocation of water between competing farm uses of water. Optimisation models take the opportunity cost of water into account while optimising water use between multiple crops. Simplifications of the soil-cropwater subsystem are necessary to optimise agricultural water use between activities which are differentiated by crop, irrigation technology and soil at whole-farm level. Appropriate use of crop simulation models to provide input for mathematical programming models holds promise but needs to be weighed against the extra time needed to validate models and generate the required information. Research is necessary to determine the value of considering water as a stock resource compared to a situation where water use is optimised without considering water as a stock resource. Optimisation results indicated that it is profitable to irrigate larger areas with water saved from deficit irrigation and increasing irrigation efficiency. Relatively little research was done to demonstrate the externalities caused by irrigation farming under the current water policy. Future research should focus on developing integrated hydro-economic modelling frameworks that will incorporate irrigation externalities. Modelling decision-making by means of a single-attribute utility function is unsatisfactory and more research is necessary to improve understanding of the decision-making process to enhance whole-farm modelling frameworks that will assist farmers in making tactical decisions.
Highlights
South Africa is currently undergoing a phase of water allocation reform
This paper was originally presented at the Water Research Commission 40-Year Celebration Conference, Kempton Park, 31 August - 1 September 2011. * To whom all correspondence should be addressed. +27 (0)51 401-3359; fax: +27 (0)86 525-5398; e-mail: groveb@ufs.ac.za implementation of water conservation and demand management would have some serious implications for irrigated agriculture, since it accounts for 62% of stored water use in South Africa, with Government arguing that in many instances the water use is highly inefficient (DWAF, 2004)
The main objective of this paper is to review the response of the research community through Water Research Commission-funded projects to conduct whole-farm level economic analyses of irrigation-related problems
Summary
While South Africa’s National Water Act (Act No 36 of 1998) and National Water Policy (1997) provide the legislative and policy framework for water allocation, they do not provide detailed strategies and approaches to promote equity, sustainability and efficiency in water use, or a process to roll this out across the country. A complicating factor is that currently half of the water management areas are experiencing water deficits, while the country as a whole is in surplus. The current reality is that in many instances it is not practical or economically viable to transfer water from surplus to deficit areas, resulting in localised water scarcities. Water conservation and demand management relate to measures to improve the efficiency of water use and the reallocation of water from lower to higher benefit uses within or between water-use sectors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.