Abstract

SummaryThe progression of wind turbine technology has led to wind turbines being incredibly optimized machines often approaching their theoretical maximum production capabilities. When placed together in arrays to make wind farms, however, they are subject to wake interference that greatly reduces downstream turbines' power production, increases structural loading and maintenance, reduces their lifetimes, and ultimately increases the levelized cost of energy. Development of techniques to manage wakes and operate larger and larger arrays of turbines more efficiently is now a crucial field of research. Herein, four wake management techniques in various states of development are reviewed. These include axial induction control, wake steering, the latter two combined, and active wake control. Each of these is reviewed in terms of its control strategies and use for power maximization, load reduction, and ancillary services. By evaluating existing research, several directions for future research are suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.