Abstract

Abstract: In present day, the maintenance of streetlight is one of the major problem for electricity boards in India. Also, there is scope for saving power during off peak time i.e. in from around midnight 12AM to 04AM in the morning. The methods that are currently used to maintain and control the street light is more complex and uneconomical. In this paper a new technique is proposed to control the intensity of LED Street lights using LDR, and to automate street lights using PIR sensors, and LDRs, resulting in power saving. Implementation is done using PIC controller. This paper presents a smart street lighting system which provides a safe night time environment for all road users and pedestrian. The main objectives are to build an automation system of street lighting using a low-cost microcontroller which is PIC and to achieve energy-saving. Light Emitting Diode (LED) is represented as the light module. This system is controlled according to the specific mode. These modes are controlled by two sensors which are Light Dependent Resistor (LDR) and Passive Infrared (PIR) sensor. This system can automatically turn on and off the lights according to traffic flow. This system operates during the night and the focus is only for the one-way road at a junction. Street light will be on when only there is road user otherwise, it will turn off. This design can save a great amount of electricity or energy consumption compared to conventional street lights that keep alight during nights. Moreover, the maintenance cost can be reduced and lifespan of the system will increase. As the result, the system has been successfully designed and implemented as a model system. Keywords: PIR, LDR, Streetlights, Power supply, microcontroller

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.