Abstract

Building-integrated photovoltaics (BIPV) have attracted interest due to their capacity to feasibly supply buildings with renewable power generation, helping to achieve net-zero or net-positive energy goals. BIPV systems include many different solutions depending on the application, the PV technology, and the envelope material they substitute. Among BIPV systems, the last two decades have seen a rising interest in transparent and semi-transparent BIPV (T- and ST-BIPV), which add features such as daylighting and solar radiation control. T- and ST-BIPV mainly consist of opaque PV cells embedded in fenestration systems (PV cladding), while most recent research considers semi-transparent PV cells (homogeneous PV glazing) with improved optical properties. The evaluation of T- and ST-BIPV systems in building performance is complex, as it needs to combine optical, thermal, electrical, and daylighting calculations. Therefore, adequate modeling tools are key to the development of these technologies. A literature review is presented on T- and ST-BIPV. First, the types of T- and ST-BIPV technologies present in the literature are summarized, highlighting the current trends. Then, the most common optical, thermal, and electrical models are described, finishing with a summary of the T-and ST-BIPV modeling capabilities of the most common building simulation tools. Regardless of the implemented modeling tools, the main challenges to be considered are the optical model, the inclusion of the PV output in the window energy balance, and the calculation of the cell temperature for the correct assessment of cell efficiency. Modeling research mostly considers conventional PV (Si-based PV and thin-film) technologies, and research studies rarely address the cost evaluation of these T- and ST-BIPV systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.