Abstract

The forming limit diagram (FLD) is used in sheet metal forming analysis to determine how close the sheet metal is to tearing when it is formed into a product shape in a stamping process. The strain-path dependent nature of the FLD causes the method to become ineffective in the analysis of complex forming process, especially restrikes, flanging operations, hydroforming, and even first draw dies with deep pockets or embossments. Experimental evidence for a path-independent stress-based FLD has been reported in the literature, suggesting that the path dependency of the strain-based approach arises from the path dependent constitutive laws governing the relationship between the stress and strain tensors. This paper reviews several theoretical models of sheet metal forming instability, including bifurcation analyses of diffuse and through-thickness neck formation, the M-K model and microscopic void damage models. The equations governing the deformation at the instant of the bifurcation is shown to be independent of path in all of these models, providing a solid theoretical bases for the stress-based approach. The stress-based FLD can now be used equally well for all forming processes, without concern for path effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.