Abstract
Background In silico methods for toxicity prediction have increased significantly in recent years due to the 3Rs principle. This also applies to predicting reproductive toxicology, which is one of the most critical factors in pesticide approval. The widely used quantitative structure–activity relationship (QSAR) models use experimental toxicity data to create a model that relates experimentally observed toxicity to molecular structures to predict toxicity. Aim of the study was to evaluate the available prediction models for developmental and reproductive toxicity regarding their strengths and weaknesses in a pesticide database.MethodsThe reproductive toxicity of 315 pesticides, which have a GHS classification by ECHA, was compared with the prediction of different in silico models: VEGA, OECD (Q)SAR Toolbox, Leadscope Model Applier, and CASE Ultra by MultiCASE.ResultsIn all models, a large proportion (up to 77%) of all pesticides were outside the chemical space of the model. Analysis of the prediction of remaining pesticides revealed a balanced accuracy of the models between 0.48 and 0.66.ConclusionOverall, predictions were only meaningful in rare cases and therefore always require evaluation by an expert. The critical factors were the underlying data and determination of molecular similarity, which offer great potential for improvement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.