Abstract

The review covers theoretical and experimental studies of two kinds of dips (local depressions) in spectral line profiles emitted by plasmas: Langmuir-wave-caused dips (L-dips) and charge-exchange-caused dips (X-dips). Positions of L-dips (relative to the unperturbed wavelength of a spectral line) scale with the electron density Ne roughly as Ne1/2, while positions of X-dips are almost independent of Ne. L-dips and X-dips phenomena are interesting and important both fundamentally and practically. The fundamental interest is due to a rich physics behind each of these phenomena. As for important practical applications, they are as follows. Observation of L-dips constitutes a very accurate method to measure the electron density in plasmas - the method that does not require the knowledge of the electron temperature. L-dips also allow measuring the amplitude of the electric field of Langmuir waves - the only one spectroscopic method available for this purpose. In the most recent laser plasma experiments, L-dips were found to be a spectroscopic signature of the two-plasmon decay instability. This instability causes hot-electron generation and is a critical part in laser-driven inertial confinement fusion program. As for observations of X-dips, they serve to determine rates of charge exchange between multicharged ions. This is an important reference data virtually inaccessible by other experimental methods. The rates of charge exchange are essential for magnetic fusion in tokamaks, for population inversion in the soft x-ray and VUV ranges, for ion storage devices, as well as for astrophysics (e.g., for the solar plasma and for determining the physical state of planetary nebulae).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call