Abstract
The shortage in energy resources combined with the climb in greenhouse emissions is the main incentive beyond the deployment of solar energy resource in various applications. One of the most successful applications is the utilization of solar energy in the domestic water heating systems (DWHS) because 70% of the consumed energy in the residential segment is utilized for space heating and appliances in cold climates 1. However, the full deployment of solar energy in domestic water heating is only possible when an energy storage system with acceptable price is available. Recently a new tendency for deploying phase change materials (PCMs) as an energy storage system is introduced in several solar DWHS. These systems are known as integrated PCM in solar DWHS and offer several advantages including high storage capacity, low storage volume, and isothermal operation during the charging and discharging phases. The present study reviews various techniques utilized for integrating the PCM in solar water heating systems and the utilized methods for enhancing the heat transfer characteristics of the PCM through the usage of extended surfaces and high conductive additives. Copyright © 2017 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.