Abstract
Abstract Introduction Congenital colour vision deficiencies affect 8% of the male and 0.5% of the female population. The study of colour vision is a complex process due to several factors: the psychophysics of vision itself, the difficulty to establish mathematical models for its analysis, the vague correlation of results between different tests, and the influence of external factors such as lighting, the tests condition, or the experience of the examiner and the patient. In the present document, a simplified review was carried out on the main colour vision tests available in clinical practice. Material and methods Once a filtered preliminary review was made of the bibliography related to the study of colour vision using the PubMed search tool, the most used tests in clinical practice were selected according to their frequency of use and the purpose for which they were applied. A bibliographic study was then carried out on each particular test according to the design of the shown stimuli, its target population, and its sensitivity and specificity. Results From the 95 publications found using the PubMed search tool, in 41 of them, colour tests were used by researchers in their methodology. From the 64 colour tests used, 19 of them were different (with 4 of them being different tests adapted by research groups, and 2 of them carried out online). The most used tests were the following: Ishihara test (10.88%), Farnsworth–Munsell (7.04%), Farnsworth–Munsell 100 Hue (6.4%), Cambridge Colour Test (3.84%), Hardy–Rand–Rittler (3.2%), tests developed by the groups (2.56%), the Anomaloscope (1.28%), the online tests (1.28%) and, finally, Colour Assessment and Diagnosis (0.64%), Pfluger Trident Colour Plates (0.64%), Toothguide Training Box (0.64%), Lanthony Desaturated D-15 (0.64%), City University Test (0.64%), Universal Colour Discrimination Test (0.64%), and Rabin Cone Contrast Test (0.64%). Conclusions The Anomaloscope is the “gold standard” in terms of colour vision testing, despite its incompatibility with daily clinical practice. It is fairly complex to use, difficult to understand for children, and its practice requires having the time available. Nevertheless, it is possible to reach an accurate approximation through the combination of some of the tests listed in this article. The above mentioned tests are a good alternative to determine the presence of dyschromatopsia in settings closer to daily clinical practice or in less controlled settings than a clinical study. The major drawback among the wide range of tests available for the study of colour vision is the difficulty to compare results between tests, since units of the reported data are usually different, and experience is required for its correct interpretation. Currently, there is no consensus on which colour test is the most complete. It is, therefore, advisable to use at least 2 tests in order to ensure diagnoses, and have more extensive information about the visual perception of patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Archivos de la Sociedad Española de Oftalmología (English Edition)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.