Abstract

Neodymium (Nd) and dysprosium (Dy) based rare earth (RE) magnets are critical to green economy due to their vital role in permanent magnet applications such as electric motors and generators. The accumulating RE magnet waste in the form of end-of-life products (EoL), criticality of supply-demand, and the huge environmental costs associated with RE mining translated into an increased focus on RE recycling processes in the last decade. Environmentally friendly pyrometallurgical techniques were developed as an alternative to the traditional hydrometallurgical route due to the generation of large amounts of waste in hydrometallurgy. Liquid metal extraction (LME) is a promising pyrometallurgical technology as it has the ability to handle a wide variety of scrap feed materials, from swarf to ingots; to produce clean material with minimal impurities; and to allow the separation of metallic species without metallothermic reduction. So far, magnesium, silver, copper, and bismuth have been used as LME agents while exploration of other possibilities is ongoing. This article presents a systematic review of previous studies on the extraction agents in terms of the reaction mechanisms, behavior of the RE elements, extraction efficiencies, and the formation of intermetallic compounds during the process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call