Abstract

This study presents the findings of a comprehensive SWOT analysis on the integration of hybrid electric turbochargers (HETs) in mass-produced road vehicles. Through a synthesis of multiple research findings, this study compared the performance of HETs on thermal engines versus traditional turbochargers and HETs on thermal engines versus HETs on hybrid engines. The analysis highlights key strengths, weaknesses, opportunities, and threats associated with the adoption of HET technology in the automotive industry. The results of the SWOT analysis provide valuable insights for both manufacturers and consumers regarding the feasibility and benefits of adopting HET technology in modern vehicles. By elucidating the fundamental mechanics of turbochargers and demonstrating the potential of hybrid electric turbocharging, this study contributes to a deeper understanding of the role of HETs in shaping the future of automotive engineering. In conclusion, this study underscores the potential of HETs to substantially mitigate the environmental impact of the transportation sector by reducing emissions and conserving energy. The novelty of this study is reflected in its comprehensive synthesis of multiple research findings, offering insights into the feasibility and benefits of adopting HET technology in modern vehicles, thereby contributing to a deeper understanding of the role of HETs in shaping the future of automotive engineering and highlighting their continued significance, as evidenced by the systematic SWOT analysis presented. Their ability to optimize fuel efficiency and power output, coupled with the feasibility of downsized engines, positions HETs as an attractive option for sustainable mobility solutions. Further research is warranted to comprehensively understand the environmental and economic implications of widespread HET adoption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call