Abstract

The hydrogen storage tank is a key parameter of the hydrogen storage system in hydrogen fuel cell vehicles (HFCVs), as its safety determines the commercialization of HFCVs. Compared with other types, the type IV hydrogen storage tank which consists of a polymer liner has the advantages of low cost, lightweight, and low storage energy consumption, but meanwhile, higher hydrogen permeability. A detailed review of the existing research on hydrogen permeability of the liner material of type IV hydrogen storage tanks can improve the understanding of the hydrogen permeation mechanism and provide references for following-up researchers and research on the safety of HFCVs. The process of hydrogen permeation and test methods are firstly discussed in detail. This paper then analyzes the factors that affect the process of hydrogen permeation and the barrier mechanism of the liner material and summarizes the prediction models of gas permeation. In addition to the above analysis and comments, future research on the permeability of the liner material of the type IV hydrogen storage tank is prospected.

Highlights

  • With the increasing demand for fossil fuels internationally and domestically, the emission of carbon dioxide is increasing

  • The nonequilibrium lattice fluid thermodynamic (NELF) model is obtained by applying the nonequilibrium thermodynamics for the glassy polymer (NET-GP) to the lattice fluid (LF) model

  • It is very essential and challenging to reduce the hydrogen permeation amount as much as possible and predict the permeation behavior, which will still be the focus of future research

Read more

Summary

Introduction

With the increasing demand for fossil fuels internationally and domestically, the emission of carbon dioxide is increasing. Many global problems, such as climate change and global warming, come one after another [1,2]. HFCVs, for their high energy conversion efficiency, environmental protection, and low noise, have become one of the important directions for future automobiles development, which benefits from the special properties of hydrogen. TThhisisppaappeerraaiimmss ttoo ssuurrvveeyy tthhee eexxiissttiinnggliltieterraatuturereoonnthtehehyhdyrdorgoegnenpepremrmeaebailbitiylitoyf othf e thlienelirnmeratmeraitaelrsiaolfsthofe tthyepetyIVpehIyVdrhoygdernosgteonrasgteortaagnekstatnokosbttaoinobataminorae mthoorreoutghhoruonudgehrusntdanerdsitnagndoifntgheofhtyhderhoygdernopgeenrmpeeartmioenatciohnarcahcaterraicstteicrsisatincds amndecmhaencihsamnsisimnspionlypmoleyrms,earns,d atnhdenthpenropvriodveidaesoalsidolitdhetohreeotriceatilcbalasbiassfisorfotrhtehdeedseigsing,nd, edveevleolpompmenetn, ta,nadndopoptitmimiziaztaiotinonof otfytpyepeIVIVhyhdyrdorgoegnesntosrtaograegteantkans.kIsn. pInarptiacurtliacru,ltahre, tthraentsrpaonrstpporrot cpersoscoefsshyodf rhoygdernoignenpoilnyppphthmphptoyrrheeeyrrldenyesseedrreenmssocrsnneegoocennttaoegnesrttnnsnedscetdlndhcaptuilhnenpuetdiedhnrpedeSmerpdreetSmhedcreedideetacneiiidittfoandciifSiootneticieSifnnrotofc2eeienont.ac2nrintno.eIatminnIdnonmtntnoedS5tstodhSe.5ettdceeeh.stcmleteibstlomiabsetonrhtatenrhhra3tioreht,3aidrto,etmhsrtmdmheamsoeeyapofceypabhfcvpaebahvapeneaaurreirinsusorisiemosususduemsurdosvfrcofovceforloofyeieenrlhysfifefsnyhtfiirhecdytchirmerideeoemfnranagoftttacaesegsttncreeoiiitnnnraorpisvlvraepssooal.resllmfaSr.vvffmeeSeeefcceeddaettccitiaiottininitionnonignotng4tht.nhh4etT.oeheTfohpeppftherhoprrtephoiocrspaccieospeepsacssspapeesspsaraesporeraiesrfoeriesrf

Hydrogen Permeation in Polymers
TDA Method versus HPHP Method
Pressure
Additives
Prediction Models
Dual-Mode Sorption Model
Gas–Polymer Matrix Model
Nonequilibrium Lattice Fluid Thermodynamic Model
Free Volume Theory
Findings
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call