Abstract
The IABAT project — Impact of Accelerator Based Technologies on Nuclear Fission Safety — started in 1996 in the frame of 4 th Framework Programme of the European Union, R&D specific programme “Nuclear fission safety 1994–1998”, area A.2 “Exploring innovative approaches/Fuel cycle concepts,” as one of the first common European activities in ADS. The project was completed October 31, 1999. The overall objective of the IABAT project has been a preliminary assessment of the potential of Accelerator-Driven Systems (ADS) for transmutation of nuclear waste and for nuclear energy production with minimum waste generation. Moreover, more specific topics related to nuclear data and code development for ADS have been studied in more detail. Four ADSs have been studied for different fuel/coolant combinations: liquid metal coolant and solid fuel, liquid metal coolant and dispersed fuel, and fast and thermal molten salt systems. Target studies comprised multiple target solutions and radiation damage problems in a target environment. In a tool development part of the project a methodology of subcriticality monitoring has been developed based on Feynman-alpha and Rossi-alpha methods. Moreover, a new Monte-Carlo burnup code taking full advantage of continuous neutron cross-section data has been developed and benchmarked. Impact on the risk from high-level waste repositories from radiotoxicity reduction using ADS has been assessed giving no crystal-clear benefits of ADS for repository radiotoxicity reduction but concluding some important prerequisites for effective transmutation. In proliferation studies important differences between critical reactors and ADS have been underlined and non-proliferation measures have been proposed. In assessment of accelerator technology costing models have been created that allow the circular and linear accelerator options to be compared and the effect of parameter variations examined. The calculations reported show that cyclotron systems would be more economical, due mainly to the advantage of the cost of RF power supplies. However, the accelerator community regards with skepticism the possibility of transporting and extracting more than a 10mA beam current from a 1GeV cyclotron and therefore technical factors may limit the application of cyclotrons. Finally, this review summarizes development of nuclear data in the energy region between 20 Mev and 150 MeV. Neutron and proton transport data files for Fe, Ni, Pb, Th, 238U and 239Pu have been created. The high-energy part of the data files consists completely of results from model calculations, which are benchmarked against the available experimental data. Although there is obviously future work left regarding fine-tuning of several parts of the data files, the representation of nuclear reaction information up to 150 MeV is already better than can be attained with intranuclear cascade codes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.