Abstract

A review of Shape Memory alloy characteristics and constitutive laws for describing the stress-strain behavior and its future possible extension of researches is presented. First, an overview of SMA characteristics is presented. The modeling aspect of SMA stress-strain relationship is discussed. Three commonly used representative constitutive models predicting quasistatic SMA behavior – Tanaka, Liang and Rogers and Brinson are examined and a comparative study is presented. Differences between the definitions of material constants in these models are pointed out. The necessity for incorporating the strain rate and non-isothermal effects in these models is discussed. In addition to the detailed review of the three constitutive laws the Brinson model is verified through a corresponding algorithm. It is shown that the model can simulate both the stress and temperature induced martensite transformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.