Abstract

Presbyopia and myopia research shows a growing interest in ciliary muscle biometry using optical coherence tomography (OCT). Until now, segmentation of the ciliary muscle is often performed manually using either custom-developed programs or image processing software. Here we present a novel software for semi-automatic segmentation of the ciliary muscle. It provides direct import of OCT images in DICOM format, a standardized procedure for segmentation, image distortion correction, the export of anatomical ciliary muscle landmarks, like ciliary muscle apex and scleral spur, as well as a continuous thickness profile of the ciliary muscle as a novel way of analysis. All processing steps are stored as XML files, fostering documentation and reproducibility of research through the possibility of replicating the analysis. Additionally, CilOCT supports batch processing for the automated analysis of large numbers of images and the respective data export to tabulated text files based on the stored XML files. CilOCT was successfully applied in several studies and their results will be summarized in this paper.

Highlights

  • Accommodation, the eye’s adjustment to different viewing distances, is achieved by a contraction of the ciliary muscle, a smooth, ring-shaped muscle surrounding the crystalline lens, controlling its shape to keep the retinal image in focus

  • The reliability of the ciliary muscle segmentation performed with CilOCT was evaluated by analyzing the Optical coherence tomography (OCT) images of fifteen near-emmetropic volunteers

  • We presented CilOCT, an open-source software for the semi-automatic segmentation of the ciliary muscle in OCT images

Read more

Summary

Introduction

Accommodation, the eye’s adjustment to different viewing distances, is achieved by a contraction of the ciliary muscle, a smooth, ring-shaped muscle surrounding the crystalline lens, controlling its shape to keep the retinal image in focus. Due to a worldwide increase in myopia prevalence [1] and innovative approaches for presbyopia correction [2], research on a deeper understanding of the ciliary muscle’s morphology and mechanisms has increased during the last years. Optical coherence tomography (OCT) has been frequently used to image the ciliary muscle morphology and its changes during accommodation [3,4,5,6,7,8].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call