Abstract

Abstract Supercapacitors have gained a lot of attention due to their unique features like high power, long cycle life and environment-friendly nature. They act as a link for energy-power difference between a traditional capacitor (having high power) and fuel cells/batteries (having high energy storage). In this perspective, a worldwide research has been reported to address this and rapid progress has been achieved in the advancement of fundamental as well as the applied aspects of supercapacitors. Here, a concise description of technologies and working principles of different materials utilized for supercapacitors has been provided. The main focus has been on materials like carbon-based nanomaterials, metal oxides, conducting polymers and their nanocomposites along with some novel materials like metal-organic frameworks, MXenes, metal nitrides, covalent organic frameworks and black phosphorus. The performance of nanocomposites has been analysed by parameters like energy, capacitance, power, cyclic performance and rate capability. Some of the latest supercapacitors such as electrochromic supercapacitor, battery-supercapacitor hybrid device, electrochemical flow capacitor, alternating current line filtering capacitor, micro-supercapacitor, photo-supercapacitor, thermally chargeable supercapacitor, self-healing supercapacitor, piezoelectric and shape memory supercapacitor have also been discussed. This review covers the up-to-date progress achieved in novel materials for supercapacitor electrodes. The latest fabricated symmetric/asymmetric supercapacitors have also been reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.