Abstract
The use of stochastic differential equations offers great advantages for statistical arbitrage pairs trading. In particular, it allows the selection of pairs with desirable properties, e.g., strong mean-reversion, and it renders traditional rules of thumb for trading unnecessary. This study provides an exhaustive survey dedicated to this field by systematically classifying the large body of literature and revealing potential gaps in research. From a total of more than 80 relevant references, five main strands of stochastic spread models are identified, covering the ‘Ornstein–Uhlenbeck model’, ‘extended Ornstein–Uhlenbeck models’, ‘advanced mean-reverting diffusion models’, ‘diffusion models with a non-stationary component’, and ‘other models’. Along these five main categories of stochastic models, we shed light on the underlying mathematics, hereby revealing advantages and limitations for pairs trading. Based on this, the works of each category are further surveyed along the employed statistical arbitrage frameworks, i.e., analytic and dynamic programming approaches. Finally, the main findings are summarized and promising directions for future research are indicated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.