Abstract

Stimulated Raman scattering (SRS) microscopy is a nonlinear optical imaging method for visualizing chemical content based on molecular vibrational bonds. Featuring high speed, high resolution, high sensitivity, high accuracy, and 3D sectioning, SRS microscopy has made tremendous progress toward biochemical information acquisition, cellular function investigation, and label-free medical diagnosis in the biosciences. In this review, the principle of SRS, system design, and data analysis are introduced, and the current innovations of the SRS system are reviewed. In particular, combined with various bio-orthogonal Raman tags, the applications of SRS microscopy in cell metabolism, tumor diagnosis, neuroscience, drug tracking, and microbial detection are briefly examined. The future prospects for SRS microscopy are also shared.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call