Abstract

Plasma guns offer opportunities to generate and direct plasma flows at high energy density. Typically, such guns comprise coaxial electrodes that are connected to high-current sources (e.g., capacitor banks, pulse lines, inductive stores, or magnetic-flux-compression generators). The basic interactions include ionization of materials such as injected gas or preinstalled wires/foils, acceleration of these materials by the Lorentz force, and expulsion of the resulting plasma flows. We review the use of a particular arrangement in the form of a plasma flow switch that acts as a multimegampere commutator, but it can also provide a magnetized-plasma target for compression by an imploding liner. In a quite separate concept, a plurality of quasi-steady plasma guns in a spherical array provides converging, collimated jets to compress plasma with stand-off from the plasma generators and chamber walls. Such stand-off in a repetitively pulsed system can be crucial for the development of fusion power reactors at megagauss energy densities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call