Abstract

Production and utilization of coal are one of the primary routes of accumulation of Toxic Elements (TEs) in the soil. The exploration of trends in the accumulation of TEs is essential to establishing a soil pollution strategy, implementing cost-effective remediation, and early warnings of ecological risks. This study provides a comprehensive review of soil concentrations and future accumulation trends of various TEs (Cr, Ni, Pb, Co, Cu, Cd, Zn, Fe, Mn, and As) in Indian coal mines. The findings revealed that average concentrations of Cr, Mn, Ni, Cu, Zn, Pb, and Co surpass India's natural background soil levels by factors of 2, 4.05, 5.32, 1.77, 9.6, and 6.15, respectively. Geo-accumulation index values revealed that 27.3%, 14.3%, and 7.7% of coal mines are heavily polluted by Ni, Co, and Cu, respectively. Also, the Potential Ecological Risk Index indicates that Cd and Ni are primary contaminants in coal mines. Besides, the health risk assessment reveals oral ingestion as the main exposure route for soil TMs. Children exhibit a higher hazard index than adults, with Pb and Cr being major contributors to their non-carcinogenic risk. In addition, carcinogenic risks exist for females and children, with Cr and Cu as primary contributors. Multivariate statistical analysis revealed that TEs (except Cd) accumulated in the soil from anthropogenic sources. The assessment of future accumulation trends in soil TE concentrations reveals dynamic increases that significantly impact both the ecology and humans at elevated levels. This study signifies a substantial improvement in soil quality and risk management in mining regions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.