Abstract

Full-field fringe projection techniques have been widely studied in academia and applied in industrial fields because of the advantages of non-contact operation, fast full-field acquisition, high accuracy and automatic data processing. Phase data map is calculated from one or multiple captured fringe pattern images on the measured object surface, which are called as single-shot and multiple-shot 3D measurement methods. Although multiple-shot methods can give highly accurate data for measuring static objects, it could be degraded by disturbance, such as vibration and environmental noises between gap of image shot. However, single-shot methods are insensitive to vibrational noises because of capturing only one image. Therefore, various single-shot methods have been actively researched recently with the advent of new imaging and projecting devices. This paper reviews the single-shot 3D shape measurement techniques by projecting and capturing one fringe pattern image on the object surface, the wrapped phase demodulation algorithms from one captured image. The challenging problems and future research directions are discussed to advance single-shot 3D shape measurement techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call