Abstract

We report herein on several phenomenological electrode–solution interactions which determine the performance of lithium and lithium ion batteries. This review is based on extensive studies of the behavior of Li, lithiated carbons and lithiated transition metal oxide electrodes in a wide variety of non-aqueous electrolyte solutions. These studies included spectroscopic measurements (FTIR, XPS, EDAX), morphological and structural analysis (XRD, SEM, AFM) in conjunction with impedance spectroscopy, EQCM and standard electrochemical techniques. It appears that the performance of both Li, Li–C anodes and Li x MO y cathodes depends on their surface chemistry in solutions. We address complicated surface film formation on these electrodes, which either contribute to electrode stabilization or to capacity fading due to an increase in the electrodes' impedance. Several common classical phenomena occurring in these systems are reviewed and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.