Abstract

PurposeThis study aims to outline the current challenges in ultrasonic additive manufacturing (AM). AM has revolutionized manufacturing and offers possible solutions when conventional techniques reach technological boundaries. Ultrasonic additive manufacturing (UAM) uses mechanical vibrations to join similar or dissimilar metals in three-dimensional assemblies. This hybrid fabrication method got attention due to minimum scrap and near-net-shape products.Design/methodology/approachThis paper reviews significant UAM areas in process parameters such as pressure force, amplitude, weld speed and temperature. These process parameters used in different studies by researchers are compared and presented in tabular form. UAM process improvements and understanding of microstructures have been reported. This review paper also enlightens current challenges in the UAM process, process improvement methods such as heat treatment methods, foil-to-foil overlap and sonotrode surface roughness to increase the bond quality of welded parts.FindingsResults showed that UAM could solve various problems and produce net shape products. It is concluded that process parameters such as pressure, weld speed, amplitude and temperature greatly influence weld quality by UAM. Post-weld heat treatment methods have been recommended to optimize the mechanical strength of ultrasonically welded joints process parameters. It has been found that the tension force is vital for the deformation of the pre-machined structures and for the elongation of the foil during UAM bonding. It is recommended to critically investigate the mechanical properties of welded parts with standard test procedures.Originality/valueThis study compiles relevant research and findings in UAM. The recent progress in UAM is presented in terms of material type, process parameters and process improvement, along with key findings of the particular investigation. The original contribution of this paper is to identify the research gaps in the process parameters of ultrasonic consolidation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call