Abstract

Progress in experiment and simulation capability in the lower hybrid range of frequencies at ITER relevant parameters is reviewed. Use of LH power in reactor devices is motivated in terms of its potential for efficient off-axis current profile control. Recent improvements in simulation capability including the development of full-wave field solvers, inclusion of the scrape off layer (SOL) in wave propagation codes, the use of coupled ray tracing/full-wave/3D (r v⊥, v//) Fokker Planck models, and the inclusion of wave scattering as well as nonlinear broadening effects in ray tracing / Fokker Planck codes are discussed. Experimental and modeling results are reviewed which are aimed at understanding the spectral gap problem in LH current drive (LHCD) and the density limit that has been observed and mitigated in LHCD experiments. Physics mechanisms that could be operative in these experiments are discussed, including toroidally induced variations in the parallel wavenumber, nonlinear broadening of the pump wave, scattering of LH waves from density fluctuations in the SOL, and spectral broadening at the plasma edge via full-wave effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call