Abstract
Diminishing petroleum reserves, sharp fluctuations of crude oil prices, increasingly stringent environmental regulations and the global demand for a decreased dependence on petroleum for the production of fuels and chemicals, are the main driving force for the recent renewed interest in Fischer–Tropsch (FT) synthesis in academia and industry. Cobalt catalyst is the preferred catalyst for the production of long-chain paraffins because of its high activity, low water–gas shift activity and comparatively low price. Carbon materials including traditional activated carbons, carbon nanotubes and nanofibres, carbon spheres and mesoporous carbons have been used as the support for cobalt catalyst in the past 10 years for its inert property. The microstructures (e.g., carbon porosity, cobalt particle size, cobalt location and cobalt dispersion) of these carbon supported cobalt catalyst determine the CO conversion and product selectivity. In this paper, we focus on the most recent developments around carbon support structure effect, cobalt intrinsic properties and promoter effect on carbon supported cobalt catalyst for FT synthesis. The nitrogen doping effect, confinement effect and cobalt particle size effect on carbon nanotubes supported Co catalysts are further presented in this review.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.