Abstract

The dementia spectrum is a broad range of disorders with complex diagnosis, pathophysiology, and a limited set of treatment options, where the most common variety is Alzheimer’s disease (AD). Positron emission tomography (PET) has become a valuable tool for the detection of AD; however, following the results of post-mortem studies, AD diagnosis has modest sensitivity and specificity at best. It remains common practice that readings of these images are performed by a physician’s subjective impressions of the spatial pattern of tracer uptake, and so quantitative methods based on established biomarkers have had little penetration into clinical practice. The present study is a review of the data-driven methods available for molecular neuroimaging studies (fluorodeoxyglucose-/amyloid-/tau-PET), with emphasis on the use of machine/deep learning as quantitative tools complementing the specialist in detecting AD. This work is divided into two broad parts. The first covers the epidemiology and pathology of AD, followed by a review of the role of PET imaging and tracers for AD detection. The second presents quantitative methods used in the literature for detecting AD, including the general linear model and statistical parametric mapping, 3D stereotactic surface projection, principal component analysis, scaled subprofile modeling, support vector machines, and neural networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.