Abstract

Discrete and coalesced monocrystalline GaN and AlxGa1−xN layers grown via pendeo-epitaxy (PE) originated from side walls of GaN seed stripes with and without SiNx top masks have been grown via organometallic vapor phase deposition on GaN/AlN/6H-SiC(0001) and GaN(0001)/AlN(0001)/3C-SiC(111)/Si(111) substrates. Scanning and transmission electron microscopies were used to evaluate the external microstructures and the distribution of dislocations, respectively. The dislocation density in the laterally grown sidewall regions and in the regions grown over the SiNx masks was reduced by at least five orders of magnitude relative to the initial GaN seed layers. Tilting of 0.2° in the coalesced GaN epilayers grown over the SiNx masks was determined via X-ray and selected area diffraction; however, tilting was not observed in the material suspended above the SiC substrate and that grown on unmasked stripes. A strong, low-temperature photoluminescence band-edge peak at ~3.45 eV with a FWHM of <300 µeV was determined on the overgrowth material grown on the silicon carbide substrates. The band-edge in the GaN grown on silicon substrates was shifted to a lower energy by 10 meV, indicative of a greater tensile stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call