Abstract
In recent years there has been an enormous increase in learning resources available online through massive open online courses and learning management systems. In this context, personalized resource recommendation has become an even more significant challenge, thereby increasing research in that direction. Recommender systems use ontology, artificial intelligence, among other techniques to provide personalized recommendations. Ontology is a way to model learners and learning resources, among others, which helps to retrieve details. This, in turn, generates more relevant materials to learners. Ontologies have benefits of reusability, reasoning ability, and supports inference mechanisms, which helps to provide enhanced recommendations. The comprehensive survey in this paper gives an overview of the research in progress using ontology to achieve personalization in recommender systems in the e-learning domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.