Abstract

There is a growing interest on plug-in hybrid electric vehicles (PHEV's) due to energy security and green house gas emission issues, as well as the low electricity fuel cost. As battery capacity and all-electric range of PHEV's are improved, and potentially some PHEV's or EV's need fast charging, there is increased demand to build high power off-board charging infrastructures. A charge station architecture for municipal parking decks has been proposed, which has a DC microgrid to interface with multiple DC-DC chargers, distributed renewable power generations and energy storage, and provides functionalities of normal and rapid charging, grid support such as reactive and real power injection (including V2G), current harmonic filtering and load balance. Several non-isolated bidirectional DC-DC converters suited for charge station applications have been reviewed and compared, as the major focus of this paper. Half bridge converter is a good candidate but it is difficult to maintain high efficiency in wide battery pack voltage range. A variable frequency pulse width modulation (VFPWM) scheme is proposed to mitigate this issue. Finally three-level bi-directional DC-DC converter is suggested to be employed in this application. A 10kW prototype verifies that 95.1-97.9% full load efficiency can be achieved in charging mode with 180-360V battery pack voltage. In addition, the inductor size is only one third of the half bridge counterpart, which is a great advantage for high power converters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.