Abstract

Abstract Electrocatalytic reactions in direct alcohol fuel cells involve solid, liquid, and gas phase transport and electron and proton transfer. Better supports for the electrocatalysts are needed to carry out the reactions successfully and give a longer lifetime for the electrocatalysts. An ideal carbon support should have a high specific surface area, good electric conductivity, suitable pore size, favorable surface functional groups, good corrosion resistance, and low cost. Much work has been done on developing new carbon materials and modifying the carbon materials by pretreatment with acid, alkali, oxidant, or polymer to meet these requirements. In this work, commercial carbon supports that include the widely used carbon black Vulcan XC-72R, acetylene black, black pearls 2000, Printex XE-2, and Ketjen Black EC were briefly reviewed. New carbon materials such as carbon nanofibers, carbon nanotubes, ordered porous carbon, mesocarbon microbeads, carbon nanohorns, carbon nanocoils, and carbon aerogels were reviewed in detail. These new carbon materials generally give better performance due to their special structure, better crystallinity, and faster mass transfer when compared to the commercial materials, and carbon nanotubes demonstrated the best performance up to the present time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.