Abstract
With the growing demand for gasoline and diesel fuel and the shortage of conventional oil reserves, there has been extensive interest in upgrading technologies for unconventional feedstocks such as heavy oil. Slurry bed reactors with high tolerance to heavy oil have been extensively investigated. Among them, dispersive MoS2 is favored for its excellent hydrogenation ability for heavy oil even under harsh reaction conditions such as high pressure and high temperature, its ability to effectively prevent damage to equipment from deposited coke, and its ability to meet the requirement of high catalyst dispersion for slurry bed reactors. This paper reviews the relationship between the structure and hydrogenation effectiveness of dispersive molybdenum disulfide, the hydrogenation mechanism, and the improvement of its hydrogenation performance by adding defects and compares the application of molybdenum disulfide in heavy oil hydrogenation, desulfurization, deoxygenation, and denitrification. It is found that the current research on dispersive molybdenum disulfide catalysts focuses mostly on the reduction of stacking layers and catalytic performance, and there is a lack of research on the lateral dimensions, microdomain regions, and defect sites of MoS2 catalysts. The relationship between catalyst structure and hydrogenation effect also lags far behind the application of MoS2 in the precipitation of hydrogen, etc. Oil-soluble and water-soluble MoS2 catalysts eventually need to be converted to a solid sulfide state to have hydrogenation activity. The conversion history of soluble catalysts to solid-type catalysts and the key to their improved catalytic effectiveness remain unclear.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.