Abstract

Hygrothermal simulations have become essential for sustainable and resilient building design because moisture is the major cause of problems in buildings. Appropriate meteorological input data are important to obtain meaningful simulation results. Therefore, this article reviews different methods to create Hygrothermal Reference Years (HRY) as severe or average climate inputs. The current standards define HRYs solely based on outdoor temperature, although moisture problems are caused by a combination of climate parameters, including driving rain and other loads. Therefore, there are also methods considering several impact parameters. The existing methods can be classified into two categories: construction-independent and construction-dependent methods. The former determines HRY based on a weather data analysis and is useful for large-scale parametric studies comprising many climatic parameters acting on buildings. The latter is based in addition to computer simulations to verify the HRY also in the context of specific construction types. It is a more comprehensive approach since the moisture responses of constructions are the decisive outcome for performance predictions. The advantages and disadvantages of the different methods are summarized and compared. Lastly, further research questions and simplifications aimed at practitioners are pointed out to arrive at reliable hygrothermal building performance predictions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call