Abstract

Methods to assess radiation doses from nuclear weapons test fallout have been used to estimate doses to populations and individuals in a number of studies. However, only a few epidemiology studies have relied on fallout dose estimates. Though the methods for assessing doses from local and regional compared to global fallout are similar, there are significant differences in predicted doses and contributing radionuclides depending on the source of the fallout, e.g. whether the nuclear debris originated in Nevada at the U.S. nuclear test site or whether it originated at other locations worldwide. The sparse historical measurement data available are generally sufficient to estimate external exposure doses reasonably well. However, reconstruction of doses to body organs from ingestion and inhalation of radionuclides is significantly more complex and is almost always more uncertain than are external dose estimates. Internal dose estimates are generally based on estimates of the ground deposition per unit area of specific radionuclides and subsequent transport of radionuclides through the food chain. A number of technical challenges to correctly modeling deposition of fallout under wet and dry atmospheric conditions still remain, particularly at close-in locations where sizes of deposited particles vary significantly over modest changes in distance. This paper summarizes the various methods of dose estimation from weapons test fallout and the most important dose assessment and epidemiology studies that have relied on those methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.