Abstract
The emergence of an RGB-D (Red-Green-Blue-Depth) sensor which is capable of providing depth and RGB images gives hope to the computer vision community. Moreover, the use of local features began to increase over the last few years and has shown impressive results, especially in the field of object recognition. This article attempts to provide a survey of the recent technical achievements in this area of research. We review the use of local descriptors as the feature representation which is extracted from RGB-D images, in instances and category-level object recognition. We also highlight the involvement of depth images and how they can be combined with RGB images in constructing a local descriptor. Three different approaches are used in involving depth images into compact feature representation, that is classical approach using distribution based, kernel-trick, and feature learning. In this article, we show that the involvement of depth data successfully improves the accuracy of object recognition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: TELKOMNIKA (Telecommunication Computing Electronics and Control)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.